Handling LP-Rounding for Hierarchical Clustering and Fitting Distances by Ultrametrics

Changyeol Lee

Yonsei University, South Korea

Joint work with

Hyung-Chan An

Mong-Jen Kao

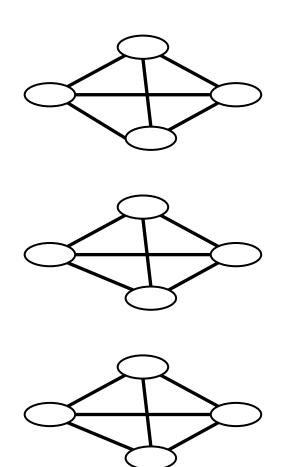
Mu-Ting Lee

Yonsei University, South Korea

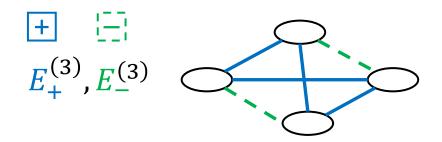
National Yang-Ming Chiao-Tung University, Taiwan

National Yang-Ming Chiao-Tung University, Taiwan

• *layers* of complete graphs (on the same vertex set)



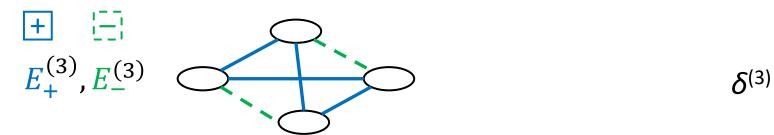
- *layers* of complete graphs (on the same vertex set)
 - each edge is labeled 🛨 or 📑



$$E_{+}^{(2)}, E_{-}^{(2)}$$

$$E_{+}^{(1)}, E_{-}^{(1)}$$

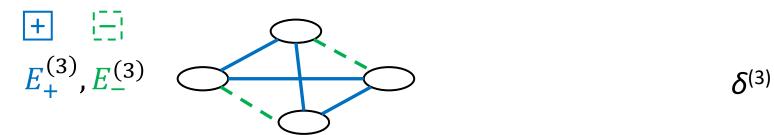
- *layers* of complete graphs
- ℓ weights $\delta^{(1)},...,\delta^{(\ell)} \geq 0$



$$E_{+}^{(2)}, E_{-}^{(2)}$$
 $\delta^{(2)}$

$$E_{+}^{(1)}, E_{-}^{(1)}$$
 $\delta^{(1)}$

- ℓ layers of complete graphs find clusterings ${\boldsymbol P}^{(1)}, \dots, {\boldsymbol P}^{(\ell)}$
- ℓ weights $\delta^{(1)},...,\delta^{(\ell)} \geq 0$

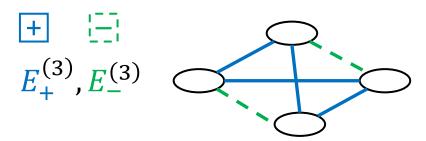


$$E_{+}^{(2)}, E_{-}^{(2)}$$
 $\delta^{(2)}$

$$E_{+}^{(1)}, E_{-}^{(1)}$$
 $\delta^{(1)}$

- (partitions) • ℓ layers of complete graphs • find clusterings $\mathcal{P}^{(1)}, \dots, \mathcal{P}^{(\ell)}$
- ℓ weights $\delta^{(1)},...,\delta^{(\ell)} \geq 0$

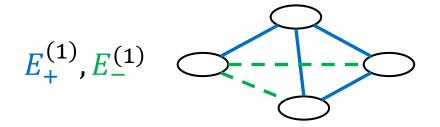
s.t. $\mathcal{P}^{(t)}$ subdivides $\mathcal{P}^{(t+1)}$ for all $t < \ell$



 $\delta^{(3)}$

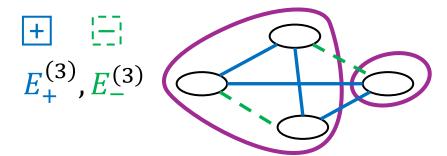
$$E_{+}^{(2)}, E_{-}^{(2)}$$

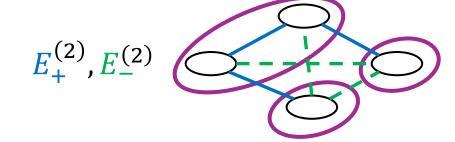
 $\delta^{(2)}$

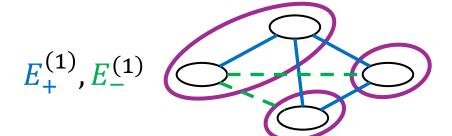


 $\delta^{(1)}$

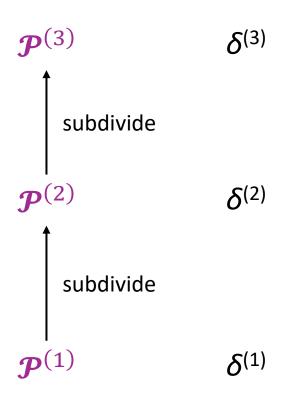
- ℓ weights $\delta^{(1)},...,\delta^{(\ell)} \geq 0$



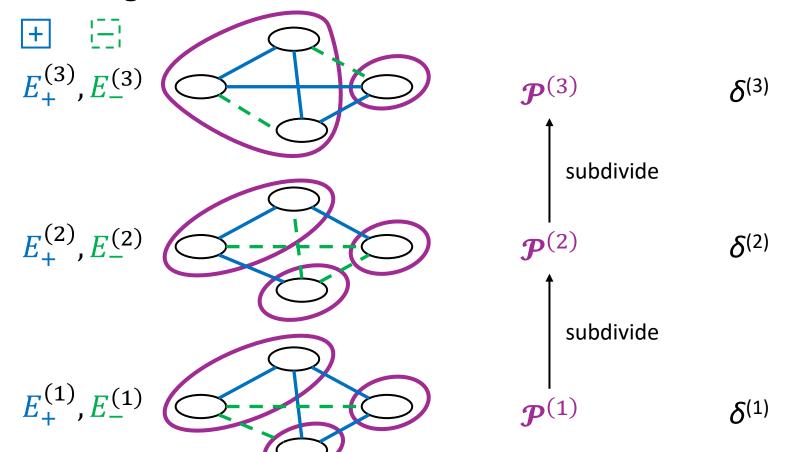


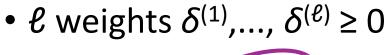


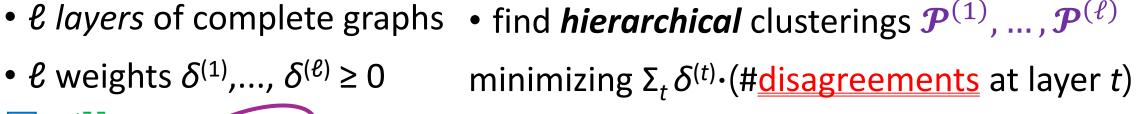
s.t. $\mathcal{P}^{(t)}$ subdivides $\mathcal{P}^{(t+1)}$ for all $t < \ell$

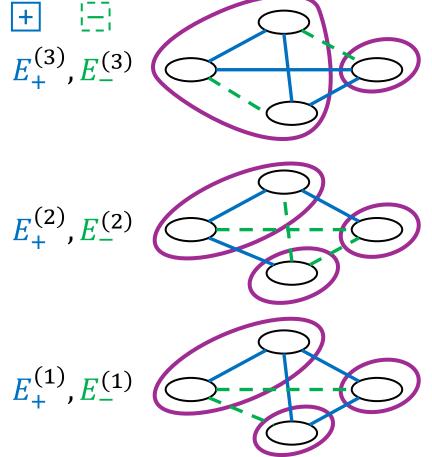


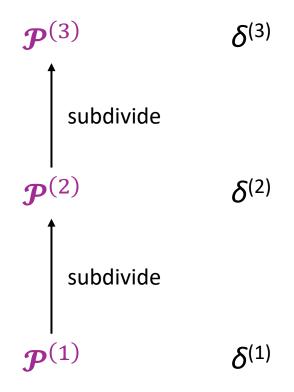
- ℓ layers of complete graphs find hierarchical clusterings ${m P}^{(1)}$, ..., ${m P}^{(\ell)}$
- ℓ weights $\delta^{(1)},...,\delta^{(\ell)} \geq 0$



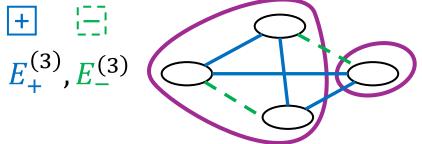


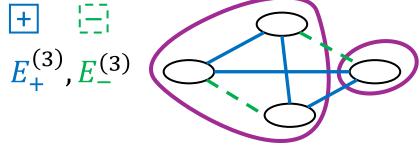






- ℓ weights $\delta^{(1)},...,\delta^{(\ell)} \geq 0$





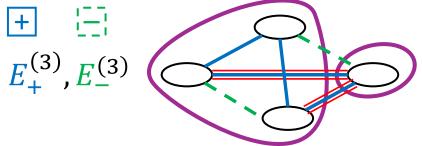


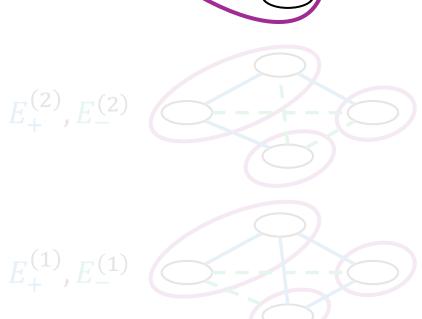
• ℓ layers of complete graphs • find **hierarchical** clusterings $\mathcal{P}^{(1)}$, ..., $\mathcal{P}^{(\ell)}$

minimizing $\Sigma_t \delta^{(t)} \cdot (\# \underline{\text{disagreements}})$ at layer t)

- + edge and endpoints are separated
- | edge and endpoints are clustered

- ℓ weights $\delta^{(1)},...,\delta^{(\ell)} \geq 0$

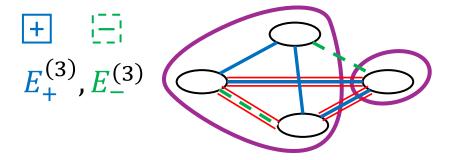


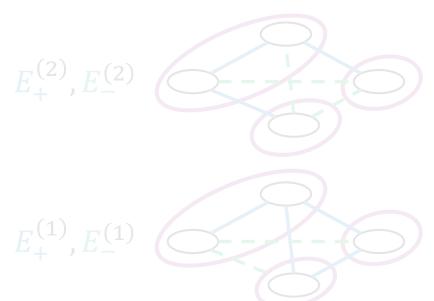


- ℓ layers of complete graphs find **hierarchical** clusterings $\mathcal{P}^{(1)}$, ..., $\mathcal{P}^{(\ell)}$
 - minimizing $\Sigma_t \delta^{(t)} \cdot (\# \underline{\text{disagreements}})$ at layer t)

- + edge and endpoints are separated
- | edge and endpoints are clustered

- ℓ weights $\delta^{(1)},...,\delta^{(\ell)} \geq 0$



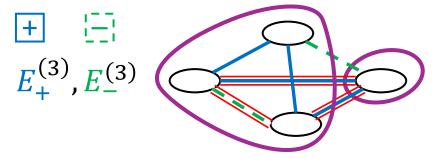


- ℓ layers of complete graphs find **hierarchical** clusterings $\mathcal{P}^{(1)}$, ..., $\mathcal{P}^{(\ell)}$
 - minimizing $\Sigma_t \delta^{(t)} \cdot (\# \underline{\text{disagreements}})$ at layer t)

- + edge and endpoints are separated
- | edge and endpoints are clustered

- ℓ layers of complete graphs find **hierarchical** clusterings $\mathcal{P}^{(1)}$, ..., $\mathcal{P}^{(\ell)}$
- ℓ weights $\delta^{(1)},...,\delta^{(\ell)} \geq 0$

minimizing $\Sigma_t \delta^{(t)} \cdot (\# \underline{\text{disagreements}})$ at layer t)

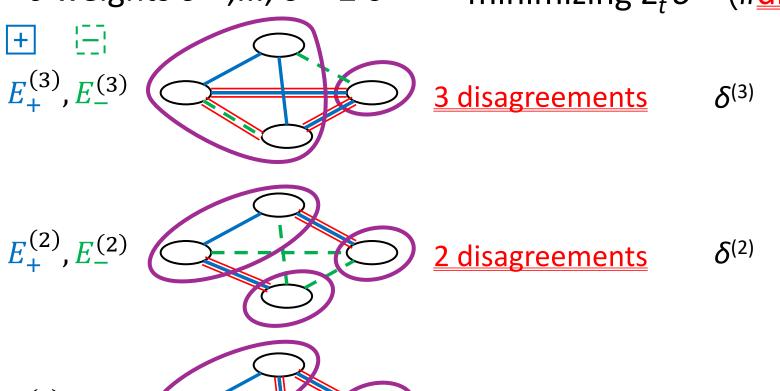


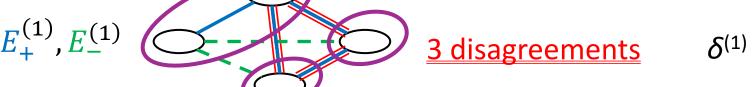
3 disagreements (at layer 3)

- + edge and endpoints are separated
- | edge and endpoints are clustered

- ℓ layers of complete graphs find hierarchical clusterings ${\boldsymbol{\mathcal{P}}}^{(1)}, \dots, {\boldsymbol{\mathcal{P}}}^{(\ell)}$
- ℓ weights $\delta^{(1)},...,\delta^{(\ell)} \geq 0$

minimizing $\Sigma_t \delta^{(t)} \cdot (\# \underline{\text{disagreements}})$ at layer t)





- ℓ layers of complete graphs find hierarchical clusterings ${\boldsymbol{\mathcal{P}}}^{(1)}, \dots, {\boldsymbol{\mathcal{P}}}^{(\ell)}$
- ℓ weights $\delta^{(1)},...,\delta^{(\ell)} \geq 0$

minimizing $\Sigma_t \delta^{(t)} \cdot (\# \underline{\text{disagreements}})$ at layer t)



- ℓ layers of complete graphs find hierarchical clusterings $\mathcal{P}^{(1)}, \dots, \mathcal{P}^{(\ell)}$
- ℓ weights $\delta^{(1)},...,\delta^{(\ell)} \ge 0$ minimizing $\Sigma_t \delta^{(t)} \cdot (\# \underline{\text{disagreements}} \text{ at layer } t)$
- HCC generalizes Correlation Clustering

- ℓ layers of complete graphs find hierarchical clusterings $\mathcal{P}^{(1)}, \dots, \mathcal{P}^{(\ell)}$
- ℓ weights $\delta^{(1)},...,\delta^{(\ell)} \ge 0$ minimizing $\Sigma_t \delta^{(t)} \cdot (\# \underline{\text{disagreements}} \text{ at layer } t)$
- HCC generalizes Correlation Clustering
- HCC generalizes L₁ Ultrametric Fitting! [Harb, Kannan, and McGregor, 2005]

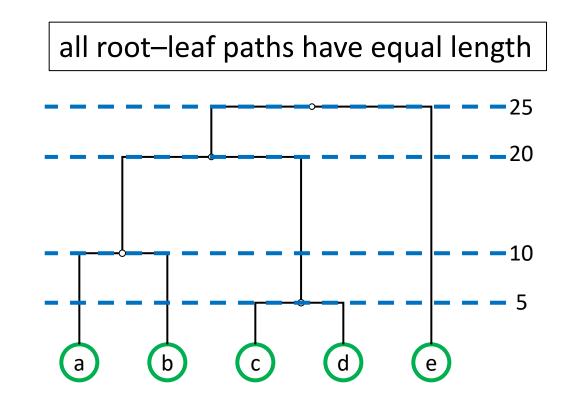
- ℓ layers of complete graphs find hierarchical clusterings $\mathcal{P}^{(1)}, \dots, \mathcal{P}^{(\ell)}$
- ℓ weights $\delta^{(1)},...,\delta^{(\ell)} \geq 0$
- minimizing $\Sigma_t \delta^{(t)} \cdot (\# \underline{\text{disagreements}})$ at layer t)
- HCC generalizes Correlation Clustering
- HCC generalizes L₁ Ultrametric Fitting! [Harb, Kannan, and McGregor, 2005]
 - Harb, Kannan, and McGregor (2005)
 - Ailon and Charikar (2005)
 - Cohen-Addad, Das, Kipouridis, Parotsidis, and Thorup (2021)

Ultrametric Fitting

Given a distance function *D*, find an ultrametric *T* that "best fits" *D*

Ultrametric Fitting

Given a distance function *D*, find an ultrametric *T* that "best fits" *D*



example of an unltrametric

Ultrametric Fitting

Given a distance function D, find an ultrametric T that "best fits" D

- Extensively studied since 1960s [Sneath and Sokal, 1962], [Cavalli-Sforza and Edwards, 1967], [Farris, 1972], [Agarwala, Bafna, Farach, Paterson, and Thorup, 1996]
 - Numerical taxonomy, phylogeny reconstruction

Ultrametric Fitting

Given a distance function D, find an ultrametric T that "best fits" D

- Extensively studied since 1960s [Sneath and Sokal, 1962], [Cavalli-Sforza and Edwards, 1967], [Farris, 1972], [Agarwala, Bafna, Farach, Paterson, and Thorup, 1996]
 - Numerical taxonomy, phylogeny reconstruction

- L₁ Ultrametric Fitting: best fit \equiv minimize $||D T||_1 \sum_{i,j} |D(i,j) T(i,j)|$
- L_0 Ultrametric Fitting: best fit \equiv minimize $||D T||_0 \sum_{ij} \mathbb{I}[D(i,j) \neq T(i,j)]$

Ultrametric Fitting

Given a distance function D, find an ultrametric T that "best fits" D

- Extensively studied since 1960s [Sneath and Sokal, 1962], [Cavalli-Sforza and Edwards, 1967], [Farris, 1972], [Agarwala, Bafna, Farach, Paterson, and Thorup, 1996]
 - Numerical taxonomy, phylogeny reconstruction

(special case of HCC)

- L₁ Ultrametric Fitting: best fit \equiv minimize $||D T||_1 \sum_{i,j} |D(i,j) T(i,j)|$
- L_0 Ultrametric Fitting: best fit \equiv minimize $||D T||_0 \sum_{i,j} \mathbb{I}[D(i,j) \neq T(i,j)]$

Previous results on L₁ Ultrametric Fitting/HCC

APX-hard

k := # distinct distances in theinput distance function D

- $min\{n, O(k \log n)\}$ -approximation for L_1 Ultrametric Fitting
 - Harb, Kannan, and McGregor (APPROX 2005)
- $min\{k+2, O(\log n \log \log n)\}$ -approximation for L_1 Ultrametric Fitting
 - Ailon and Charikar (FOCS 2005; SIAM J. Comput. 2011)
- first O(1)-approximation for HCC
 - Cohen-Addad, Das, Kipouridis, Parotsidis, and Thorup (FOCS 2021; J. ACM 2024)

Our results on HCC

APX-hard

k := # distinct distances in the input distance function D

- $min\{n, O(k \log n)\}$ -approximation for L_1 Ultrametric Fitting
 - Harb, Kannan, and McGregor (APPROX 2005)
- $min\{k+2, O(\log n \log \log n)\}$ -approximation for L_1 Ultrametric Fitting
 - Ailon and Charikar (FOCS 2005; SIAM J. Comput. 2011)
- first O(1)-approximation for HCC
 - Cohen-Addad, Das, Kipouridis, Parotsidis, and Thorup (FOCS 2021; J. ACM 2024)
- Our result: 25.7846-approximation for HCC

Previous results on L_0 Ultrametric Fitting

- APX-hard
- first O(1)-approximation
 - Cohen-Addad, Fan, Lee, and Mesmay (FOCS 2022, SIAM J. Comput. 2025)
- 5-approximation
 - Charikar and Gao (SODA 2024)

Our results on L_0 Ultrametric Fitting

- APX-hard
- first *O*(1)-approximation
 - Cohen-Addad, Fan, Lee, and Mesmay (FOCS 2022, SIAM J. Comput. 2025)
- 5-approximation
 - Charikar and Gao (SODA 2024)
- Our result: (simple) 5-approximation

Our Algorithm for HCC

Standard LP [Ailon and Charikar, 2005]
[Cohen-Addad, Das, Kipouridis, Parotsidis, and Thorup, 2021]

- "Distance" variable $x_{ij}^{(t)}$ for all $ij \in E$, $t \in [\ell]$
 - $x_{ij}^{(t)} = 1 \implies i$ and j are separated at layer t
 - $x_{ij}^{(t)} = 0 \implies i$ and j are clustered at layer t

Standard LP [Ailon and Charikar, 2005] [Cohen-Addad Das Kingu

[Ailon and Charikar, 2005]
[Cohen-Addad, Das, Kipouridis, Parotsidis, and Thorup, 2021]

- "Distance" variable $x_{ij}^{(t)}$ for all $ij \in E$, $t \in [\ell]$
 - $x_{ij}^{(t)} = 1 \implies i$ and j are separated at layer t
 - $x_{ij}^{(t)} = 0 \implies i$ and j are clustered at layer t

(+ edge is a disagreement)

(edge is a disagreement)

Standard LP [Ailon and Charikar, 2005]
[Cohen-Addad, Das, Kipouridis, Parotsidis, and Thorup, 2021]

- "Distance" variable $x_{i\,i}^{(t)}$ for all $ij\in {\it E},\,t\in [{\it \ell}]$
 - $x_{ij}^{(t)} = 1 \implies i$ and j are separated at layer t
 - $x_{ij}^{(t)} = 0 \implies i$ and j are clustered at layer t

- (+ edge is a disagreement)
- (| edge is a disagreement)

LP relaxation

$$\sum_{ij \in E_{+}^{(t)}} x_{ij}^{(t)} + \sum_{ij \in E_{-}^{(t)}} \left(1 - x_{ij}^{(t)} \right)$$

(fractional) number of disagreements (at layer t)

Standard LP [Ailon and Charikar, 2005]

[Cohen-Addad, Das, Kipouridis, Parotsidis, and Thorup, 2021]

- "Distance" variable $x_{i\,i}^{(t)}$ for all $ij\in E,\,t\in [\ell]$
 - $x_{ij}^{(t)} = 1 \implies i$ and j are separated at layer t
 - $x_{ii}^{(t)} = 0 \implies i$ and j are clustered at layer t

- (+ edge is a disagreement)
- (| edge is a disagreement)

- LP relaxation
 - $\sum_{t \in [\ell]} \delta^{(t)} \left(\sum_{i, j \in E^{(t)}} x_{ij}^{(t)} + \sum_{i, j \in E^{(t)}} \left(1 x_{ij}^{(t)} \right) \right)$ • minimize

Standard LP [Ailon and Charikar, 2005]

[Cohen-Addad, Das, Kipouridis, Parotsidis, and Thorup, 2021]

- "Distance" variable $x_{i\,i}^{(t)}$ for all $ij\in E,\,t\in [\ell]$
 - $x_{ij}^{(t)} = 1 \implies i$ and j are separated at layer t
 - $x_{ij}^{(t)} = 0 \implies i$ and j are clustered at layer t

(+ edge is a disagreement)

(| edge is a disagreement)

- LP relaxation
 - minimize

$$\sum_{t \in [\ell]} \delta^{(t)} \left(\sum_{ij \in E_{+}^{(t)}} x_{ij}^{(t)} + \sum_{ij \in E_{-}^{(t)}} \left(1 - x_{ij}^{(t)} \right) \right)$$

subject to

 \boldsymbol{x} satisfies the triangle inequalities for each layer

 \boldsymbol{x} is monotone w.r.t. layers

 $x \in [0, 1]$

Notations

- \widetilde{x} : an optimal LP solution
- $\tilde{x}_{ij}^{(t)}$: the *distance* of *ij* at layer *t*

Useful Lemma

- \widetilde{x} : an optimal LP solution
- $\tilde{x}_{ij}^{(t)}$: the distance of ij at layer t

• **Lemma**. $\#(\sqsubseteq \text{edges at layer } t \text{ with dist } < 1)$

Useful Lemma

- \widetilde{x} : an optimal LP solution
- $\tilde{x}_{ij}^{(t)}$: the distance of ij at layer t

• Lemma. $\Sigma_t \delta^{(t)}$ • #(\sqsubseteq edges at layer t with dist < 1)

Useful Lemma

- \widetilde{x} : an optimal LP solution
- $\tilde{x}_{ij}^{(t)}$: the distance of ij at layer t

Useful Lemma

- \widetilde{x} : an optimal LP solution
- $\tilde{x}_{ij}^{(t)}$: the distance of ij at layer t

"Disregarding : edges with distance < 1 in each layer only incurs an additive factor of 1"

Useful Lemma

- \widetilde{x} : an optimal LP solution
- $\tilde{x}_{ij}^{(t)}$: the distance of ij at layer t

- Lemma. $\Sigma_t \delta^{(t)} \cdot \#(\sqsubseteq)$ edges at layer t with dist $< 1) \le \mathsf{OPT}_{\mathsf{LP}}$
 - Proved using complementary slackness & weak duality

"Disregarding : edges with distance < 1 in each layer only incurs an additive factor of 1"

(partition)
• Construct a pre-clustering $\mathcal{Q}^{(t)}$ for each layer t

 $\tilde{\chi}_{e}^{(t)}$: distance of e (at layer t)

Algorithm Overview

(partition)
• Construct a pre-clustering $Q^{(t)}$ for each layer t

(Fix layer t) $Q \leftarrow \{V\}$ while there is $Q \in Q$ whose diameter is *large*, split Q into two so that #(edges separated & dist < 1) is small

 $\tilde{\chi}_{e}^{(t)}$: distance of e (at layer t)

Algorithm Overview

(partition)
• Construct a pre-clustering $Q^{(t)}$ for each layer t

```
(Fix layer t)
Q \leftarrow \{V\}
```

while there is $Q \in Q$ whose diameter is *large*, split Q into two so that #(edges separated & dist < 1) is small

- small-diameter property: every *pre-cluster* has a small diameter
- few-separated-edges property: #(edges separated by Q & dist < 1) is small

- Construct a *pre-clustering* $Q^{(t)}$ for each layer t
- Construct hierarchical clusterings bottom-up:

$$^*\mathcal{P}^{(0)} := \{\{u\}: u \in V\}$$

(at layer t) construct the *clustering* $\mathcal{P}^{(t)}$ by only merging clusters in $\mathcal{P}^{(t-1)}$

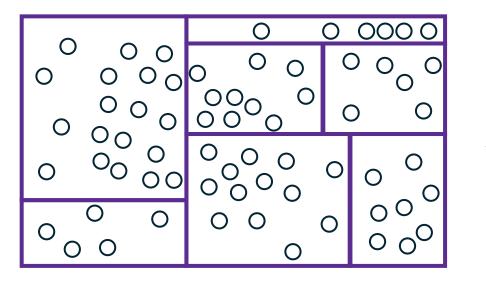
- Construct a *pre-clustering* $Q^{(t)}$ for each layer t
- Construct hierarchical clusterings bottom-up:

$$^*\mathcal{P}^{(0)} := \{ \{u\} : u \in V \}$$

(at layer t) construct the clustering $\mathcal{P}^{(t)}$ by only merging clusters in $\mathcal{P}^{(t-1)}$

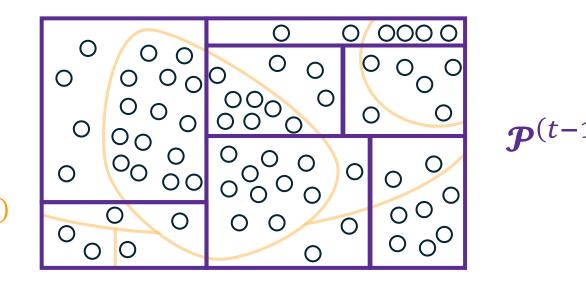
Hierarchical constraints satisfied!

(Fix layer t)



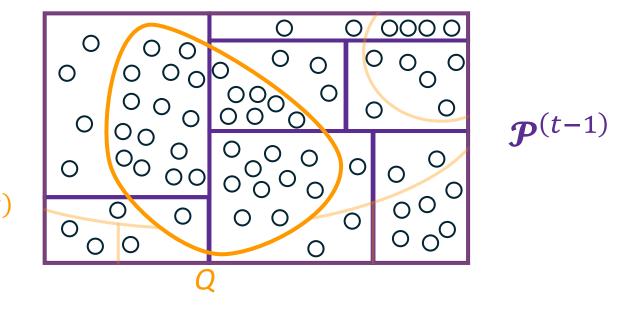
 $\mathbf{p}^{(t-1)}$

(Fix layer t)



(Fix layer t)

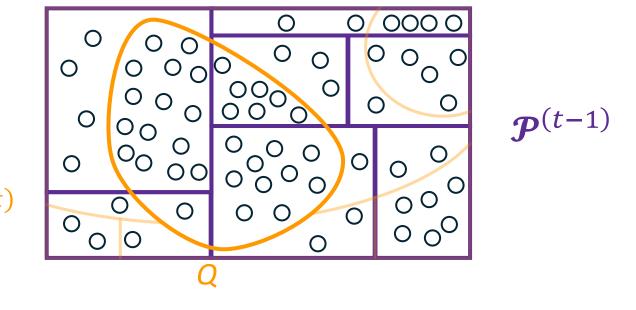
for each pre-cluster Q at layer t,



(Fix layer t)

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q



(Fix layer t)

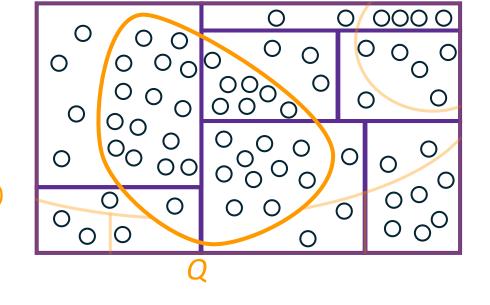
(roughly)

merging condition:

most points in P' are in $P' \cap Q$

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q



 $\mathbf{p}(t-1)$

 $Q^{(t)}$

(Fix layer t)

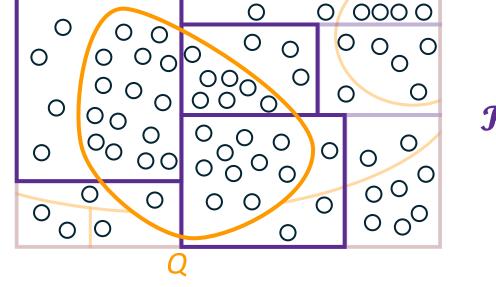
(roughly)

merging condition:

most points in P' are in $P' \cap Q$

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q



 $\mathbf{P}^{(t-1)}$

(Fix layer t)

(roughly)

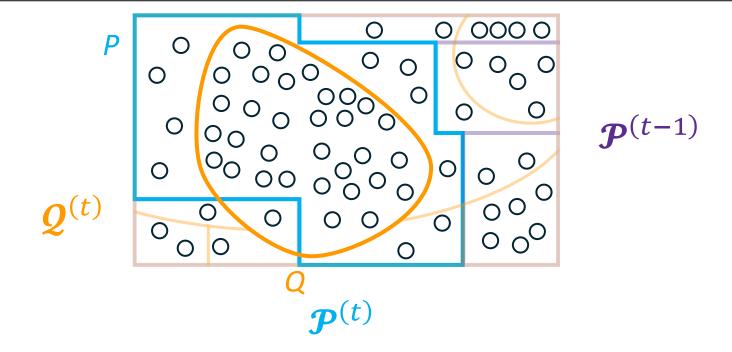
merging condition:

most points in P' are in $P' \cap Q$

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q

let P be the merged cluster; add P to $\mathcal{P}^{(t)}$



(Fix layer t)

(roughly)

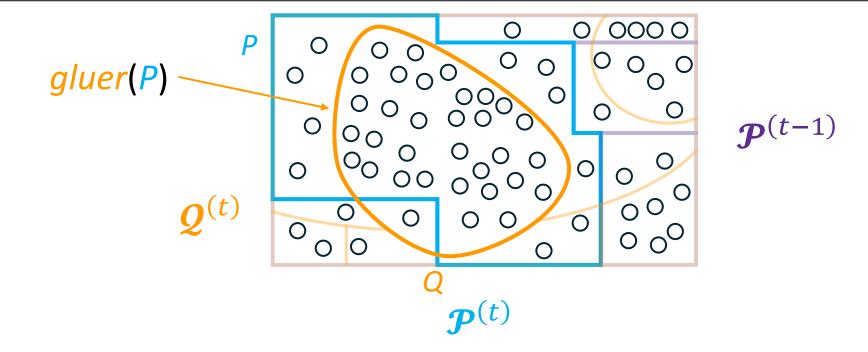
merging condition:

most points in P' are in $P' \cap Q$

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q

let P be the merged cluster; add P to $\mathcal{P}^{(t)}$



(Fix layer t)

(roughly)

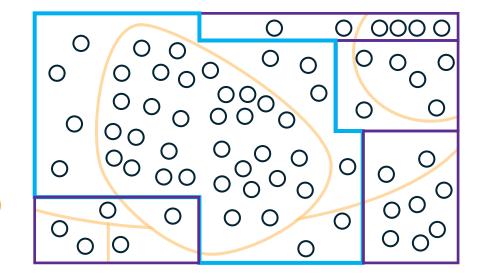
merging condition:

most points in P' are in $P' \cap Q$

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q

let P be the merged cluster; add P to $\mathcal{P}^{(t)}$



p(t-1)

(Fix layer t)

(roughly)

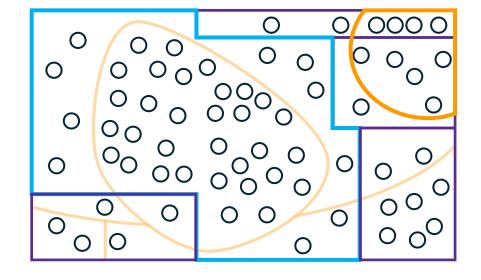
merging condition:

most points in P' are in $P' \cap Q$

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q

let P be the merged cluster; add P to $\mathcal{P}^{(t)}$



 $\mathbf{P}^{(t-1)}$

 $\mathbf{p}^{(t)}$

(Fix layer t)

(roughly)

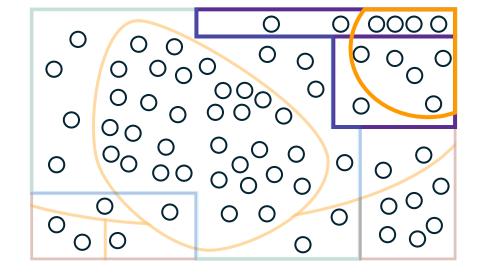
merging condition:

most points in P' are in $P' \cap Q$

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q

let P be the merged cluster; add P to $\mathcal{P}^{(t)}$



$$\mathbf{P}^{(t-1)}$$

 $Q^{(t)}$

(Fix layer t)

(roughly)

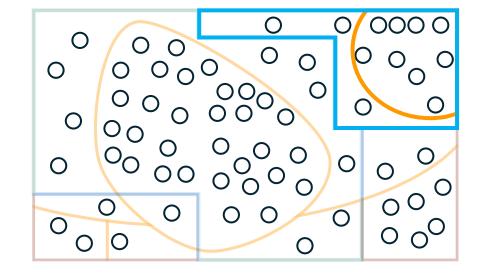
merging condition:

most points in P' are in $P' \cap Q$

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q

let P be the merged cluster; add P to $\mathcal{P}^{(t)}$



$$\mathbf{P}^{(t-1)}$$

(Fix layer t)

(roughly)

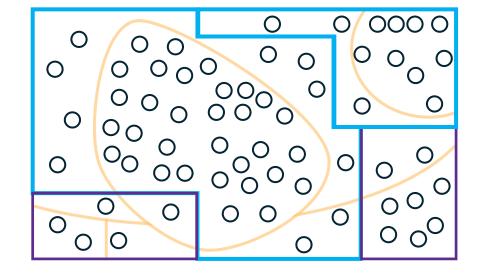
merging condition:

most points in P' are in $P' \cap Q$

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q

let P be the merged cluster; add P to $\mathcal{P}^{(t)}$



 $\mathbf{P}^{(t-1)}$

 $\mathcal{Q}^{(t)}$

(Fix layer t)

(roughly)

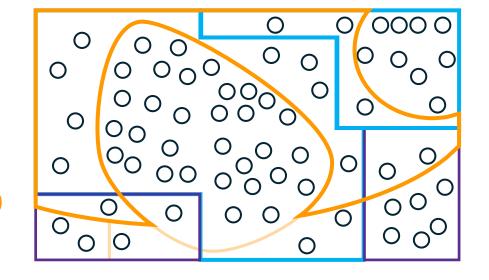
merging condition:

most points in P' are in $P' \cap Q$

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q

let P be the merged cluster; add P to $\mathcal{P}^{(t)}$



$$\mathbf{P}^{(t-1)}$$

 $\mathbf{\mathcal{P}}^{(t)}$

(Fix layer t)

(roughly)

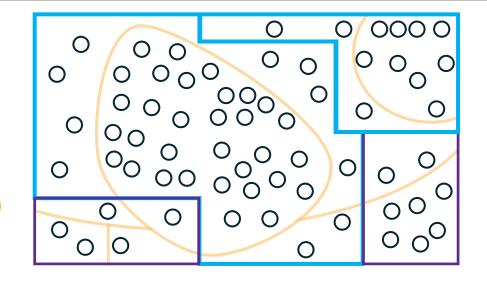
merging condition:

most points in P' are in $P' \cap Q$

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q

let P be the merged cluster; add P to $\mathcal{P}^{(t)}$



 $\mathbf{P}^{(t-1)}$

 $Q^{(t)}$

(Fix layer t)

(roughly)

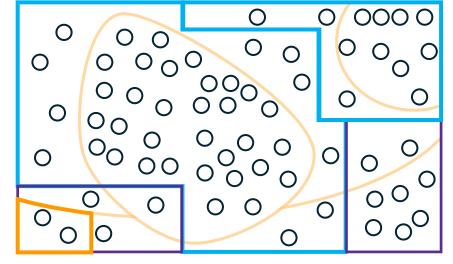
merging condition:

most points in P' are in $P' \cap Q$

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q

let P be the merged cluster; add P to $\mathcal{P}^{(t)}$



$$\mathbf{P}^{(t-1)}$$

q

(Fix layer t)

(roughly)

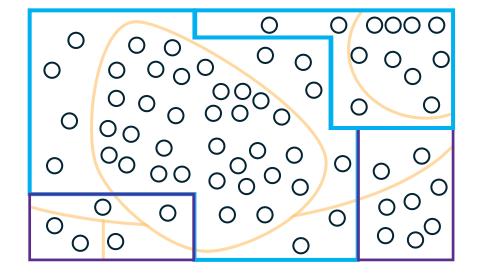
merging condition:

most points in P' are in $P' \cap Q$

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q

let P be the merged cluster; add P to $\mathcal{P}^{(t)}$



 $\mathbf{P}^{(t-1)}$

 $\mathbf{\mathcal{P}}^{(t)}$

(Fix layer t)

(roughly)

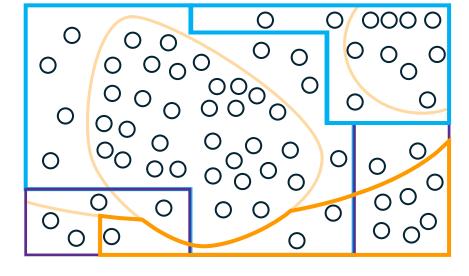
merging condition:

most points in P' are in $P' \cap Q$

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q

let P be the merged cluster; add P to $\mathcal{P}^{(t)}$



 $\mathbf{P}^{(t-1)}$

 $\mathbf{p}^{(t)}$

(Fix layer t)

(roughly)

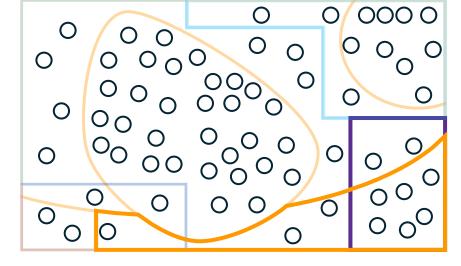
merging condition:

most points in P' are in $P' \cap Q$

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q

let P be the merged cluster; add P to $\mathcal{P}^{(t)}$



$$\mathbf{P}^{(t-1)}$$

1

(Fix layer t)

(roughly)

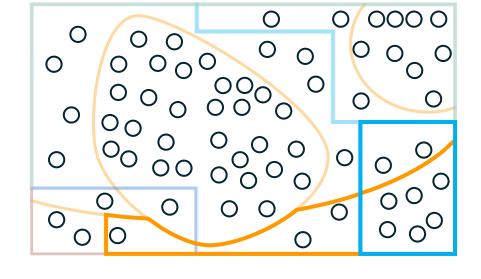
merging condition:

most points in P' are in $P' \cap Q$

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q

let P be the merged cluster; add P to $\mathcal{P}^{(t)}$



$$\mathbf{P}^{(t-1)}$$

(Fix layer t)

(roughly)

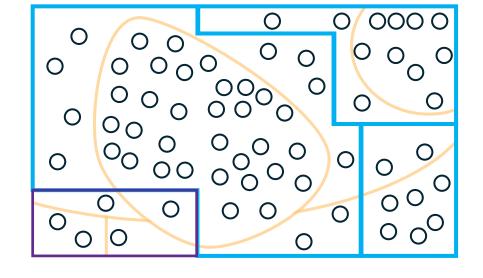
merging condition:

most points in P' are in $P' \cap Q$

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q

let P be the merged cluster; add P to $\mathcal{P}^{(t)}$



$$\mathbf{p}(t-1)$$

 $\mathcal{Q}^{(t)}$

(Fix layer t)

(roughly)

merging condition:

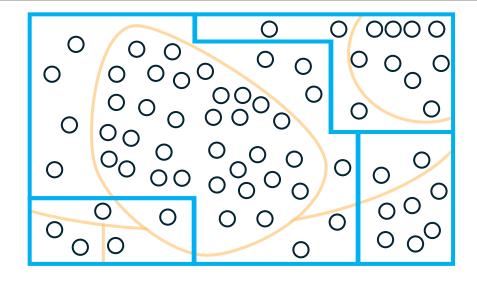
most points in P' are in $P' \cap Q$

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q

let P be the merged cluster; add P to $\mathcal{P}^{(t)}$

add all remaining unmerged clusters $P' \in \mathcal{P}^{(t-1)}$ to $\mathcal{P}^{(t)}$



p(t-1)

 $Q^{(t)}$

(Fix layer t)

(roughly)

merging condition:

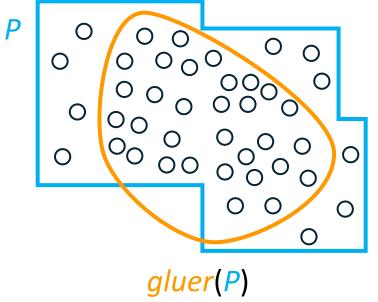
most points in P' are in $P' \cap Q$

for each pre-cluster Q at layer t,

find all $P' \in \mathcal{P}^{(t-1)}$ that satisfy a merging condition with pre-cluster Q

let P be the merged cluster; add P to $\mathcal{P}^{(t)}$

add all remaining unmerged clusters $P' \in \mathcal{P}^{(t-1)}$ to $\mathcal{P}^{(t)}$



concentration property:

most points in P are in $P \cap gluer(P)$

Analysis

Analysis Overview

(Fix layer t)

• #(<u>disagreements</u>)

$$\leq O(1) \cdot (\sum_{ij \in E_{+}^{(t)}} x_{ij}^{(t)} + \sum_{ij \in E_{-}^{(t)}} (1 - x_{ij}^{(t)}))$$

LP value at layer t

Analysis Overview

(Fix layer t)

• #(<u>disagreements</u>)

$$\leq O(1) \cdot (\sum_{ij \in E_{+}^{(t)}} x_{ij}^{(t)} + \sum_{ij \in E_{-}^{(t)}} (1 - x_{ij}^{(t)}))$$

LP value at layer t

Objective:
$$\sum_{t \in [\ell]} \delta^{(t)} \left(\sum_{ij \in E_+^{(t)}} x_{ij}^{(t)} + \sum_{ij \in E_-^{(t)}} \left(1 - x_{ij}^{(t)} \right) \right)$$

 $\tilde{x}_e^{(t)}$: distance of e (at layer t)

Analysis Overview

(Fix layer t)

• #(disagreements disregarding – edges with dist < 1) (Useful Lemma)

$$\leq O(1) \cdot (\sum_{ij \in E_{+}^{(t)}} x_{ij}^{(t)} + \sum_{ij \in E_{-}^{(t)}} (1 - x_{ij}^{(t)}))$$

 $\tilde{x}_e^{(t)}$: distance of e (at layer t)

Analysis Overview

(Fix layer t)

```
• #(disagreements disregarding – edges with dist < 1) (Useful Lemma)  \leq O(1) \cdot \text{#(edges separated by } \mathcal{Q} \text{ & dist < 1)}   \leq O(1) \cdot (\sum_{ij \in E_{\perp}^{(t)}} x_{ij}^{(t)} + \sum_{ij \in E_{\perp}^{(t)}} (1 - x_{ij}^{(t)}) ) \text{ (few-separated-edges property)}
```

Analysis Overview

(Fix layer t)

• $\#(\underline{\text{disagreements}} \text{ disregarding - edges with dist } < 1)$ (Useful Lemma)

Want: $\leq O(1) \cdot \#(\text{edges separated by } Q \text{ & dist } < 1)$

 $\leq O(1) \cdot (\sum_{ij \in E_{\perp}^{(t)}} x_{ij}^{(t)} + \sum_{ij \in E_{\perp}^{(t)}} (1 - x_{ij}^{(t)}))$ (few-separated-edges property)

Analysis Overview

(Fix layer t)

- #(disagreements disregarding edges with dist < 1)
 - ①: #(- edges clustered in \mathcal{P} & dist = 1)
 - 2: #(+ edges separated by \mathcal{P})

Want:

① + ② $\leq O(1) \cdot \#(\text{edges separated by } Q \otimes \text{dist} < 1)$

Analysis Overview

```
(Fix layer t)
```

- #(disagreements disregarding edges with dist < 1)
 - ①: #(- edges clustered in \mathcal{P} & dist = 1)
 - 2: #(+ edges separated by \mathcal{P})
 - ① ≤ O(1)·#(edges separated by Q & dist < 1 & clustered in P)

Want:

① + ② $\leq O(1) \cdot \#(\text{edges separated by } Q \otimes \text{dist} < 1)$

Analysis Overview

(Fix layer t)

- #(<u>disagreements</u> disregarding edges with dist < 1)
 - ①: #(- edges clustered in \mathcal{P} & dist = 1)
 - 2: #(+ edges separated by \mathcal{P})

Our focus: $(1) \le O(1) \cdot \#(\text{edges separated by } Q \text{ } \text{dist} < 1 \text{ } \text{\& clustered in } P)$

+) \bigcirc \le $O(1) \cdot \#$ (edges separated by \bigcirc & dist < 1 & separated by \bigcirc)

Want:

1 + 2 $\leq O(1) \cdot \#(\text{edges separated by } Q \text{ & dist } < 1)$

Analysis Overview (Fix layer t)

```
Our focus: #(- edges clustered in \mathcal{P} & dist = 1)
```

 $\leq O(1) \cdot \#(\text{edges clustered in } \mathcal{P} \quad \& \text{ separated by } \mathcal{Q} \& \text{ dist } < 1)$

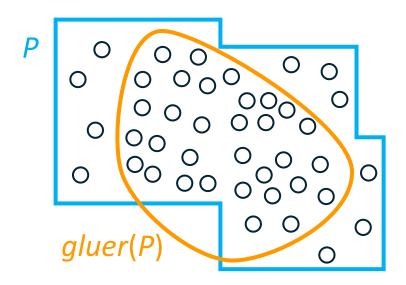
Analysis Overview (Fix layer $t, P \in \mathcal{P}$)

```
Our focus: #(- edges clustered in P & dist = 1)

\leq O(1) \cdot \#(\text{edges clustered in } P & separated by Q & dist < 1)
```

Analysis Overview

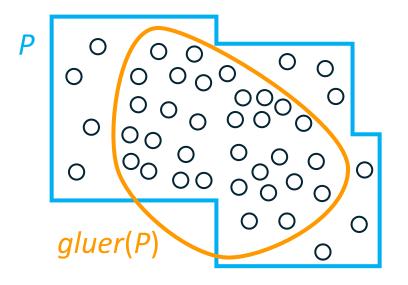
#(- edges clustered in P & dist = 1)



```
#(- edges clustered in P, separated by gluer(P) & dist = 1)

#(- edges clustered in P \setminus gluer(P) & dist = 1)

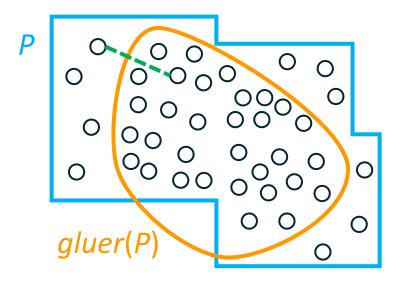
#(- edges clustered in P \cap gluer(P) & dist = 1)
```



```
#(- edges clustered in P, separated by gluer(P) & dist = 1)

#(- edges clustered in P \setminus gluer(P) & dist = 1)

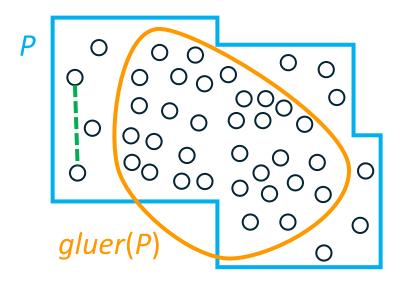
#(- edges clustered in P \cap gluer(P) & dist = 1)
```



```
#(- edges clustered in P, separated by gluer(P) & dist = 1)

#(- edges clustered in P \setminus gluer(P) & dist = 1)

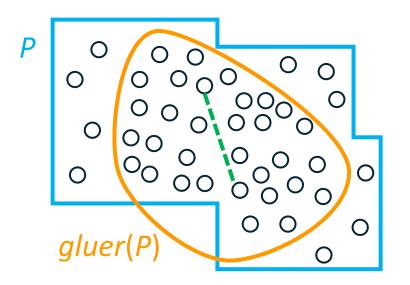
#(- edges clustered in P \cap gluer(P) & dist = 1)
```



```
#(- edges clustered in P, separated by gluer(P) & dist = 1)

#(- edges clustered in P \setminus gluer(P) & dist = 1)

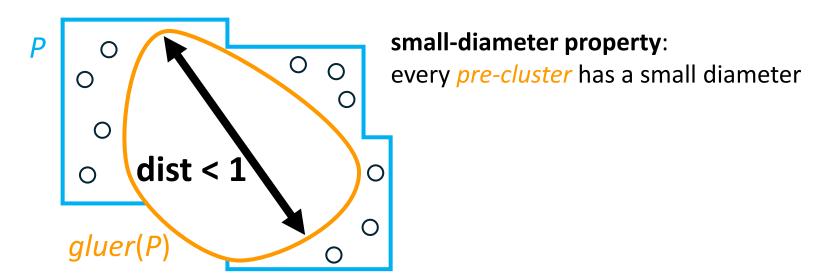
#(- edges clustered in P \cap gluer(P) & dist = 1)
```



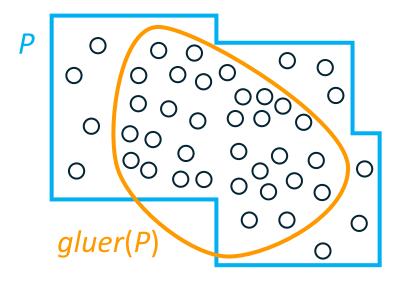
```
#(- edges clustered in P, separated by gluer(P) & dist = 1)

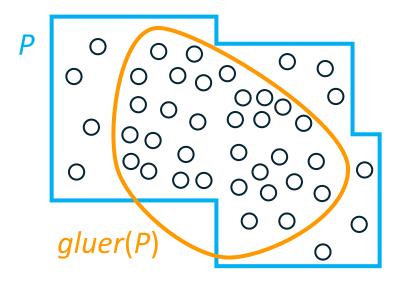
#(- edges clustered in P \setminus gluer(P) & dist = 1)

#(- edges clustered in P \cap gluer(P) & dist = 1) --- impossible
```



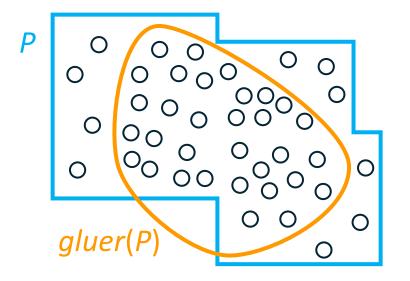
```
#(- edges clustered in P, separated by gluer(P) & dist = 1)
#(- edges clustered in P \setminus gluer(P) & dist = 1)
```





```
#(edges clustered in P, separated by gluer(P))

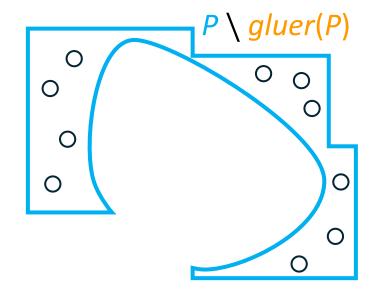
#(edges clustered in P \setminus gluer(P))
```

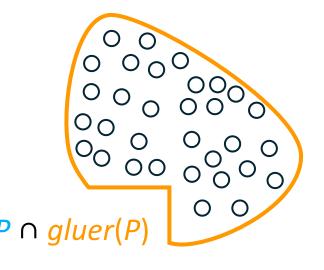


Analysis Overview

```
#(edges clustered in P, separated by gluer(P))

#(edges clustered in P \setminus gluer(P))
```





concentration property:

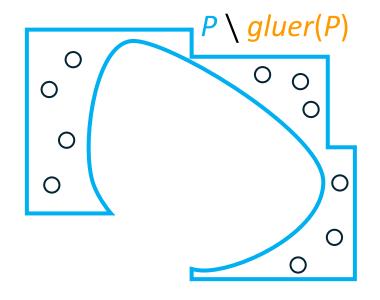
most points in P are in $P \cap gluer(P)$

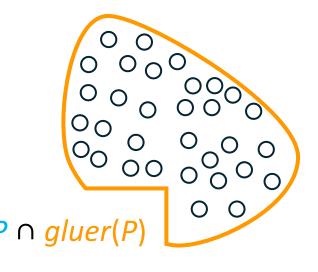
Analysis Overview

```
#(edges clustered in P, separated by gluer(P))

#(edges clustered in P \setminus gluer(P)) --- negligible
```

 \approx #(edges clustered in P, separated by gluer(P))





concentration property:

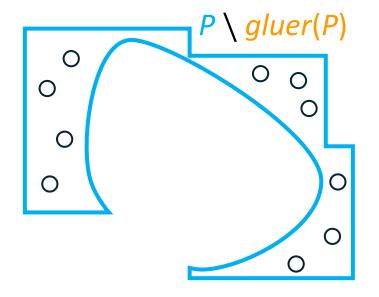
most points in P are in $P \cap gluer(P)$

Analysis Overview

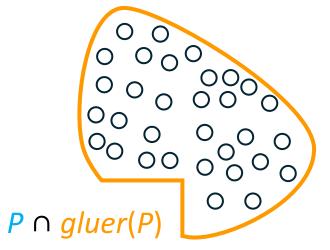
```
#(edges clustered in P, separated by gluer(P))

#(edges clustered in P \setminus gluer(P)) --- negligible
```

- ≈ #(edges clustered in P, separated by gluer(P))
- \approx #(edges clustered in P, separated by gluer(P) & dist < 1)



(further exploiting concentration property)



```
#(edges clustered in P, separated by gluer(P))
#(edges clustered in P \setminus gluer(P)) --- negligible

#(edges clustered in P, separated by gluer(P))

#(edges clustered in P, separated by gluer(P))

#(edges clustered in P, separated by gluer(P) & dist < 1)
```

```
∴ #(– edges clustered in P & dist = 1)

≤ O(1)·#(edges clustered in P, separated by Q & dist < 1)
```

Conclusion

- 25.7846-approximation for HCC
- Main ingredients
 - Useful lemma
 - Cut properties (of pre-clusterings)
- 5-approximation for L_0 Ultrametric Fitting
 - with the same ingredients
- Extension to other hierarchical clustering problems?

Thank You