

Improved Algorithms for Overlapping and Robust Clustering of Edge-Colored Hypergraphs: An LP-Based Combinatorial Approach

¹ Yonsei University, South Korea ² University of Wrocław, Poland * Equal contributions

Changyeol Lee^{1*}

Yongho Shin^{2*}

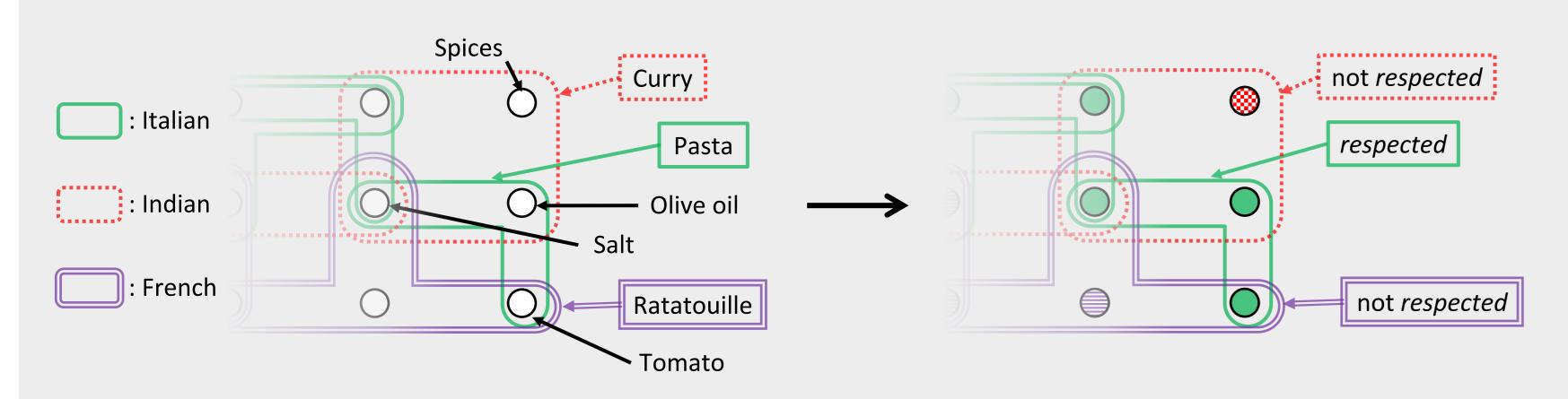
Hyung-Chan An¹

Local, Global, and Robust ECC

Overlapping and robust clustering of edge-colored hypergraphs

Edge-Colored Clustering (ECC) Problems

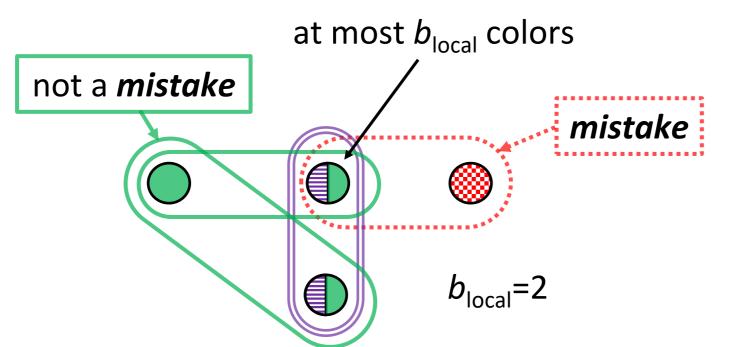
• Data with <u>categorical higher-order</u> interactions; cluster/color nodes while <u>respecting</u> interactions



- Amburg et al. (WWW'20; SDM'22), Veldt (ICML'23), Crane et al. (ICML'25)
- Limitation: traditional ECC enforces nonoverlapping and exhaustive clustering (i.e., must assign exactly one color to every node)
- Three generalizations of traditional ECC (Crane et al., WSDM'24)
- Local ECC and Global ECC overlapping clustering
- Robust ECC non-exhaustive clustering

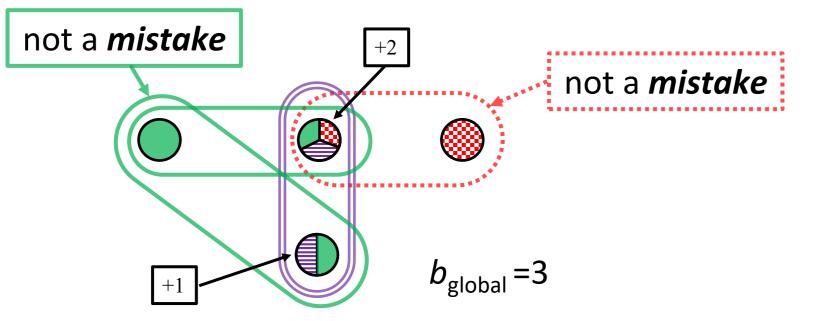
Local ECC

- A local budget **b**_{local} ≥ 1
- May assign at most b_{local} colors to each node



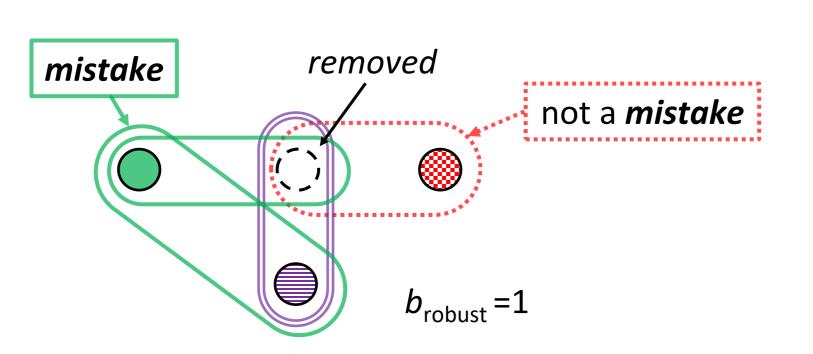
Global ECC

- A global budget $b_{global} \ge 0$
- May assign at most b_{global} extra colors throughout the hypergraph



Robust ECC

- A node-removal budget b_{robust} ≥ 0
- May remove b_{robust} nodes before the color assignment



- *Mistake*: contains a (non-removed) node whose assigned color(s) ∌ edge color
- Goal: minimize the number of mistakes

Our Contributions

- Previous algorithms (Crane et al., 2024)
- Greedy (combinatorial) algorithms
- LP-rounding algorithms

r-approx.

- Proposed algorithms: primal-dual
- LP-based and combinatorial
- at the same time

	Crane et al. (2024)		Proposed
L	ocal ECC		
	Greedy (combinatorial)	LP-rounding	Primal-dual (LP-based combinatorial)
	<i>r</i> -approx.	$(b_{local} + 1)$ -approx.	(b _{local} +1)-approx.

- $(b_{local} + 1)$ -approx. is essentially optimal for Local ECC (UGC-hard)
- Answers an open question posed by Crane et al. (2024)
- Also works with non-uniform local budgets & in the online setting

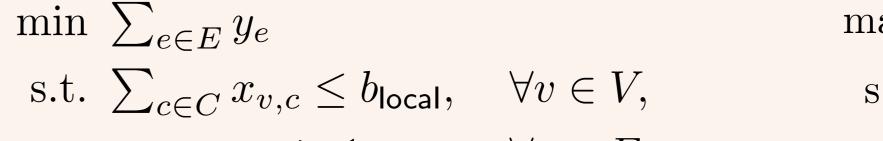
Global ECC **Primal-dual** Greedy LP-rounding (LP-based combinatorial) (combinatorial) bicriteria $(2b_{global}+2)$ -approx. *r*-approx. **Robust ECC Primal-dual** Greedy LP-rounding (combinatorial) (LP-based combinatorial) bicriteria $(2b_{\text{robust}} + 2)$ -approx.

- bicriteria: outputs an approx. soln. violating budget constraints by a given factor • $r \coloneqq \max |e|$
- Integrality gap lower bounds that (almost) match the approximation ratios
- All proposed algorithms can be analyzed as a bicriteria (O(1),O(1))-approx.
- Answers an open question posed by Crane et al. (2024)

Proposed Algorithm for Local ECC

Primal LP

- $y_e = 1 \Leftrightarrow e$ is a mistake
- $x_{vc} = 1 \Leftrightarrow v$ is colored with c



 $x_{v,c_e} + y_e \ge 1,$ $\forall e \in E, v \in e,$ $\forall v \in V, c \in C,$ $x_{v,c} \geq 0$

 $y_e \ge 0$,

- Dual LP
- $\delta_c(v) := \{e \in \delta(v) : c_e = c\}$
- $\max \sum_{e \in E, v \in e} \beta_{e,v} \sum_{v \in V} b_{\mathsf{local}} \alpha_v$

Relative error estimates

- s.t. $\sum_{e \in \delta_c(v)} \beta_{e,v} \le \alpha_v$, $\forall v \in V, c \in C$
 - $\sum_{v \in e} \beta_{e,v} \le 1,$ $\forall e \in E$,
 - $\forall v \in V$, $\alpha_v \geq 0$,
- $\forall e \in E, v \in e.$ $\forall e \in E$. $\beta_{e,v} \geq 0$,

• $slack(e) := 1 - \sum_{v \in e} \beta_{e,v}$; an edge e is tight if slack(e) = 0

• A color c is <u>loose for v</u> if $\exists e \ni v$ s.t. $c_e = c$ and slack(e) > 0

Algorithm Proposed algorithm for LOCAL ECC

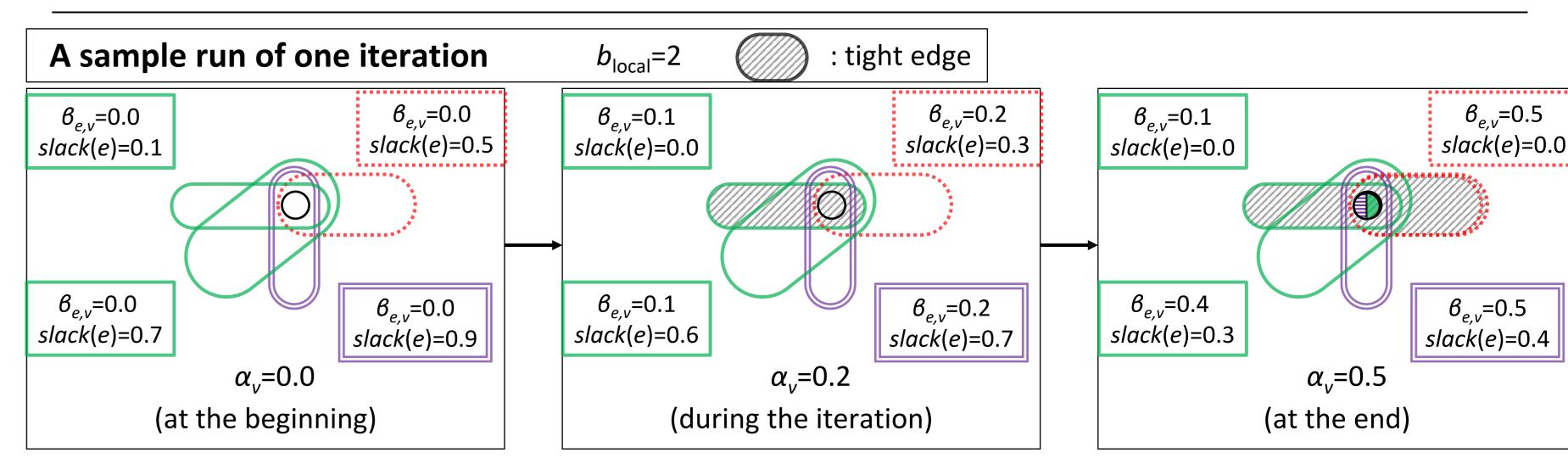
1: $(\alpha, \beta) \leftarrow (\mathbf{0}, \mathbf{0}); L \leftarrow E$

Runs in linear time

2: for $v \in V$ do

Running times (in seconds, log scale)

- while there are more than b_{local} loose colors for v do
- increase α_v and $\sum_{e \in \delta_c(v) \cap L} \beta_{e,v}$ for each loose color c for v at unit rate
- if some edge becomes tight, then remove all such edges from L
- assign loose colors for v to v



Analysis #mistakes $\leq \sum_{e} \sum_{v \in e} \theta_{e,v} \leq (b_{local} + 1)(\sum_{e} \sum_{v \in e} \theta_{e,v} - \sum_{v} b_{local} \alpha_{v}) \leq (b_{local} + 1) OPT_{Primal-LP}$ '---- weak duality every mistake is tight '-- at any moment, $\sum_{v \in e} \beta_{e,v}$ increases by $\geq (b_{local} + 1) \alpha_v$

Computational Evaluation for Local ECC

