

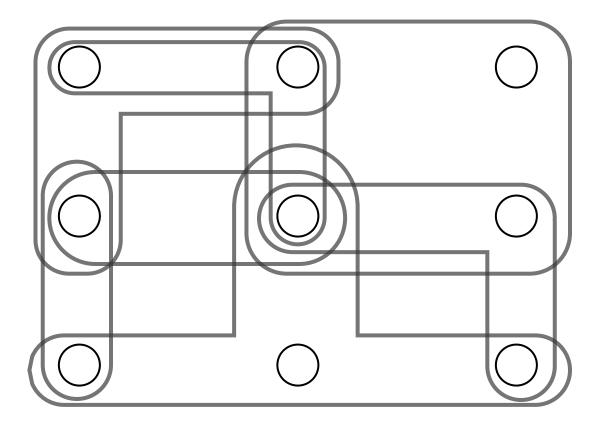
Improved Algorithms for Overlapping and Robust Clustering of Edge-Colored Hypergraphs: An LP-Based Combinatorial Approach

Changyeol Lee^{1*}, Yongho Shin^{2*}, and Hyung-Chan An¹

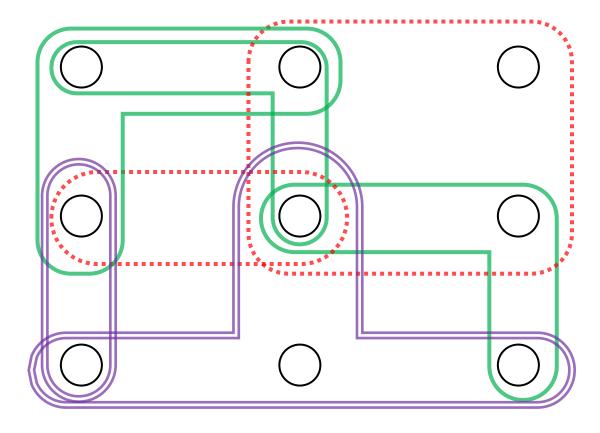
Yonsei University, South Korea
 University of Wrocław, Poland
 * Equal contributions

NeurIPS 2025: Dec 2-7, 2025

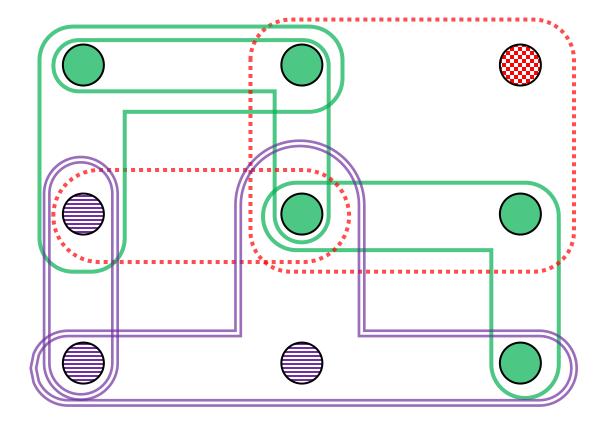
A hypergraph is given



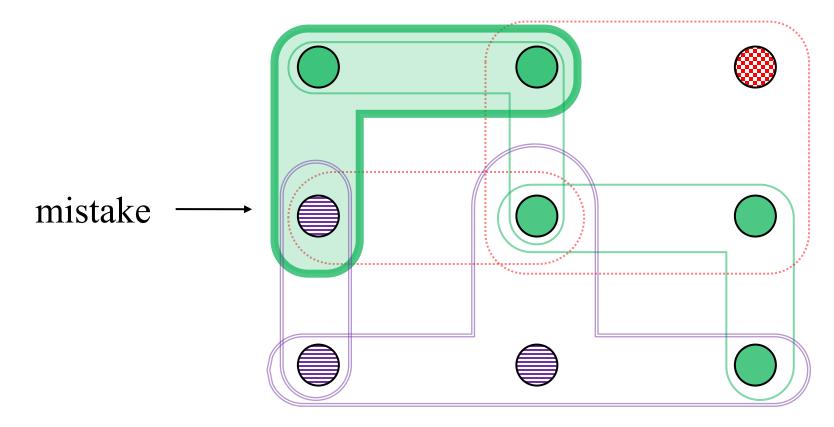
• An edge-colored hypergraph is given



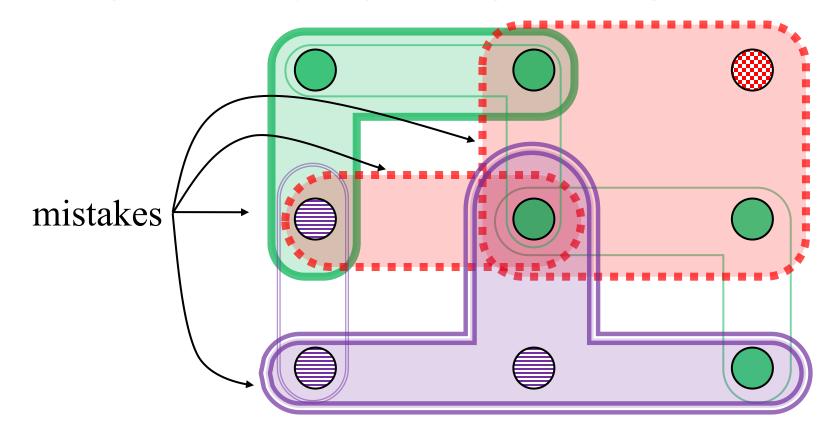
• An edge-colored hypergraph is given; assign one color to each node



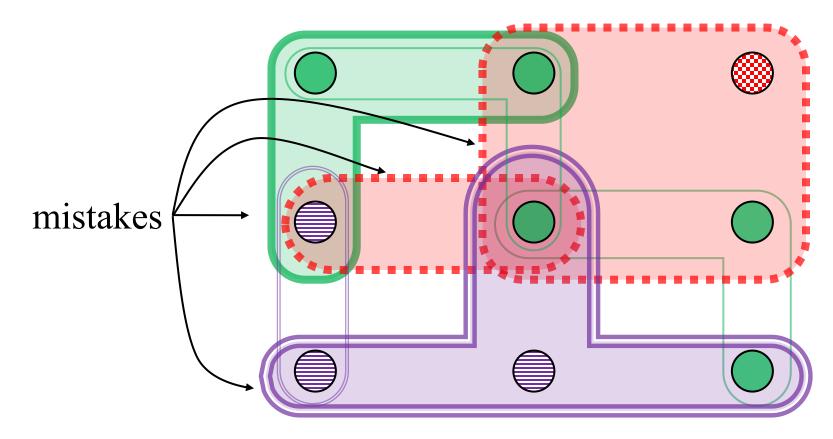
• An edge-colored hypergraph is given; assign one color to each node



• An edge-colored hypergraph is given; assign one color to each node

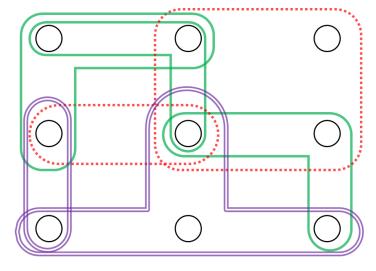


• Goal: minimize #mistakes



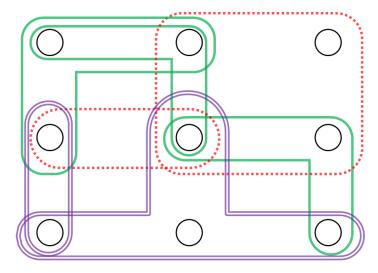
- Goal: minimize #mistakes
- Useful for clustering data with higher-order categorical interactions
- Widely studied:

• Limitation: enforces *nonoverlapping* and *exhaustive* clustering must assign exactly one color to every node

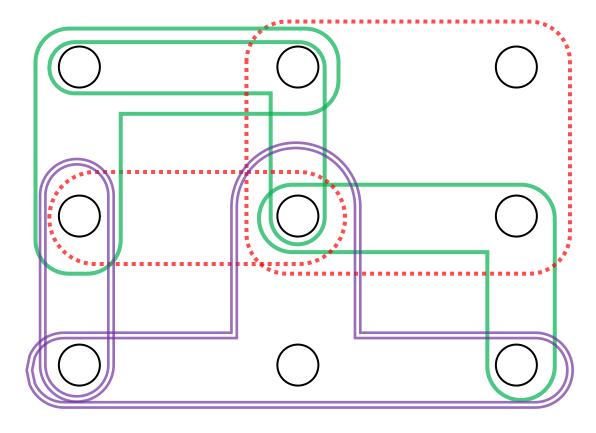


- Goal: minimize #mistakes
- Useful for clustering data with higher-order categorical interactions
- Widely studied:

• Local ECC, Global ECC, and Robust ECC proposed by Crane et al. relax these requirements (WSDM'24)

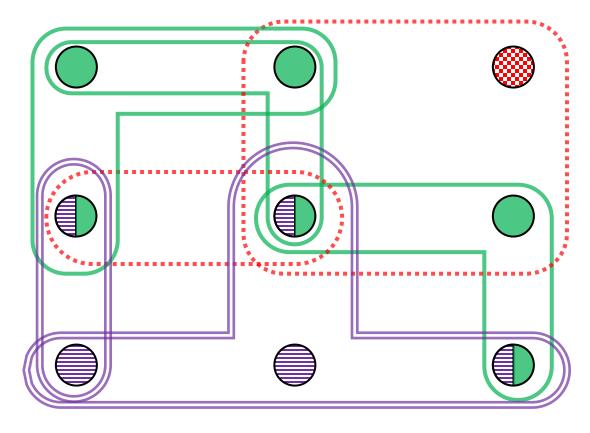


• A local budget b_{local} is given; assign (at most) b_{local} colors per node

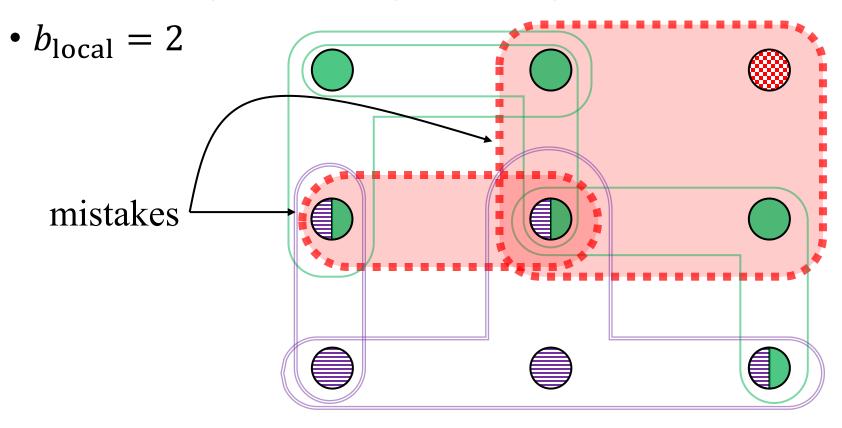


• A local budget b_{local} is given; assign (at most) b_{local} colors per node

• $b_{local} = 2$

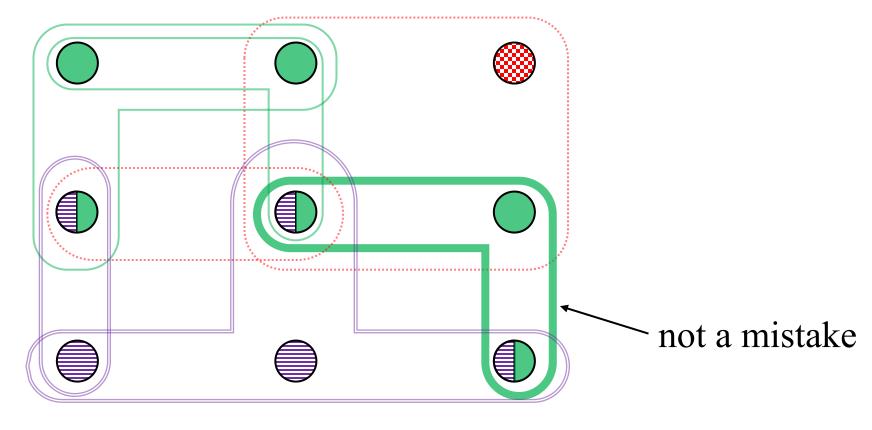


• A local budget b_{local} is given; assign (at most) b_{local} colors per node



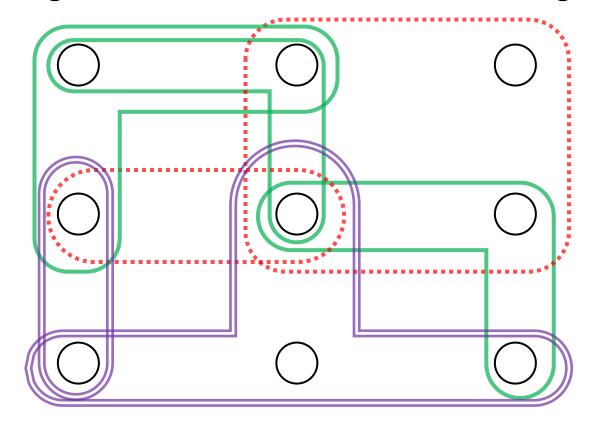
• A local budget b_{local} is given; assign (at most) b_{local} colors per node

• $b_{local} = 2$



Global ECC

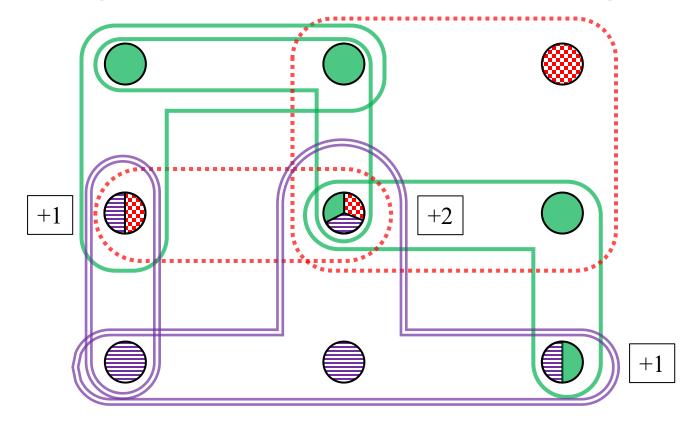
• A global budget b_{global} is given; assign additional b_{global} colors globally



Global ECC

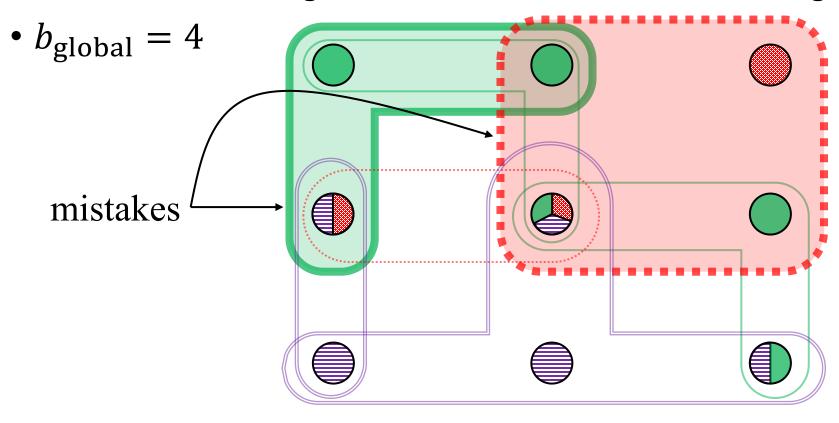
• A global budget b_{global} is given; assign additional b_{global} colors globally

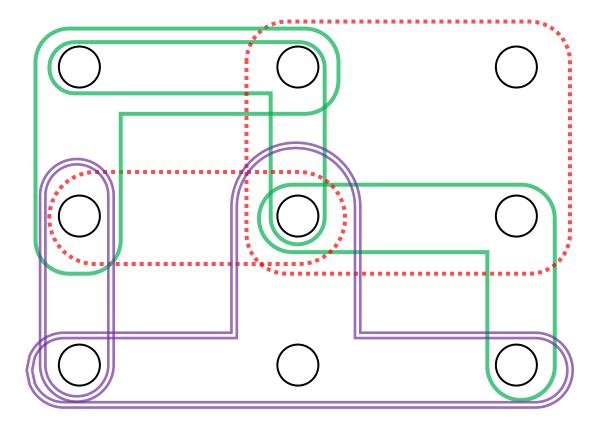
• $b_{\text{global}} = 4$

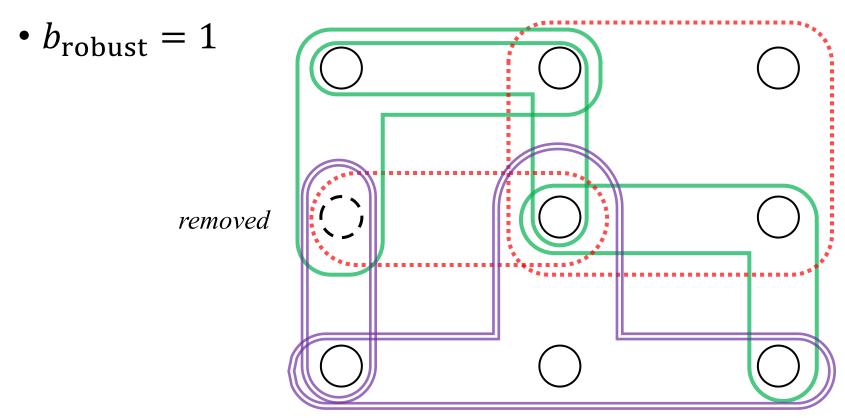


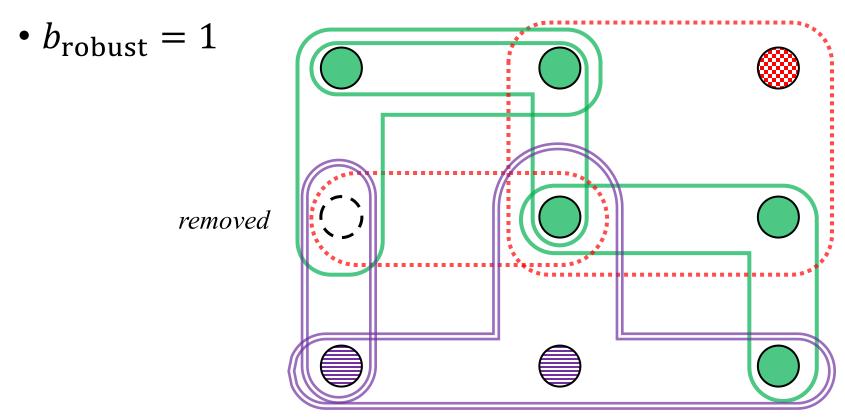
Global ECC

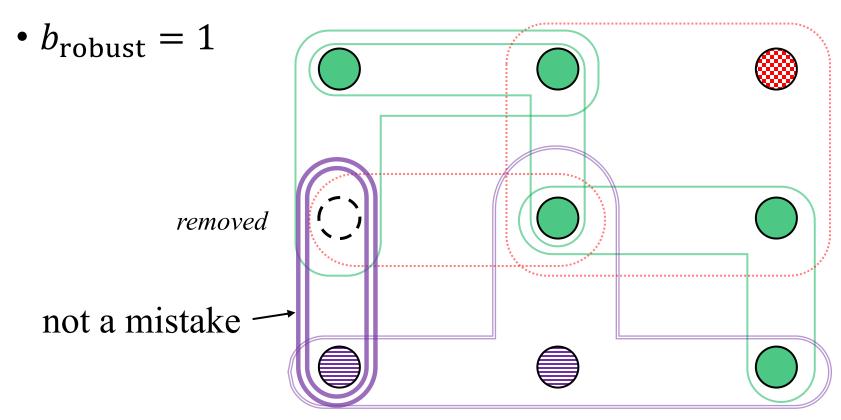
• A global budget b_{global} is given; assign additional b_{global} colors globally

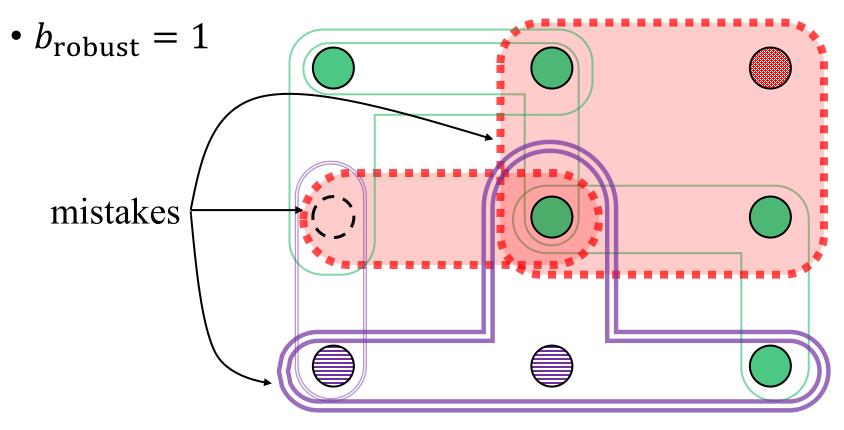












Previous results

- LP-rounding algorithms [Crane et al., 2024]
 - solve a linear program (LP)
 - convert the LP solution into an actual coloring

- Greedy algorithms [Crane et al., 2024]
 - combinatorial algorithms

Previous results

- LP-rounding algorithms [Crane et al., 2024]
 - solve a linear program (LP)
 - convert the LP solution into an actual coloring
 - high solution quality (but slow)

- Greedy algorithms [Crane et al., 2024]
 - combinatorial algorithms
 - remarkably fast (but often with low solution quality)

Previous results

• Local ECC

 $r \coloneqq \max|e|$

• $(b_{local} + 1)$ -approx. alg. (LP-rounding); r-approx. alg. (greedy) [Crane et al., 2024]

Global ECC

• bicriteria approx. alg. (LP-rounding); r-approx. alg. (greedy) [Crane et al., 2024]

Robust ECC

• bicriteria approx. alg. (LP-rounding); r-approx. alg. (greedy) [Crane et al., 2024]

- Proposed algorithms: LP-based & combinatorial
 - a *primal-dual* method
 - combine the strengths of both worlds

- Proposed algorithms: LP-based & combinatorial
 - a *primal-dual* method
 - combine the strengths of both worlds
- Computational evaluation:
 - achieve better solution quality than greedy algs.
 - significantly faster than LP-rounding (bicriteria) algs.

• Local ECC

 $r \coloneqq \max|e|$

- $(b_{local} + 1)$ -approx. alg. (LP-rounding); r-approx. alg. (greedy) [Crane et al., 2024]
- $(b_{local} + 1)$ -approx. alg. (combinatorial)
- Global ECC
 - bicriteria approx. alg. (LP-rounding); r-approx. alg. (greedy) [Crane et al., 2024]
 - $(2b_{global} + 2)$ -approx. alg. (combinatorial)
- Robust ECC
 - bicriteria approx. alg. (LP-rounding); r-approx. alg. (greedy) [Crane et al., 2024]
 - $(2b_{\text{robust}} + 2)$ -approx. alg. (combinatorial)

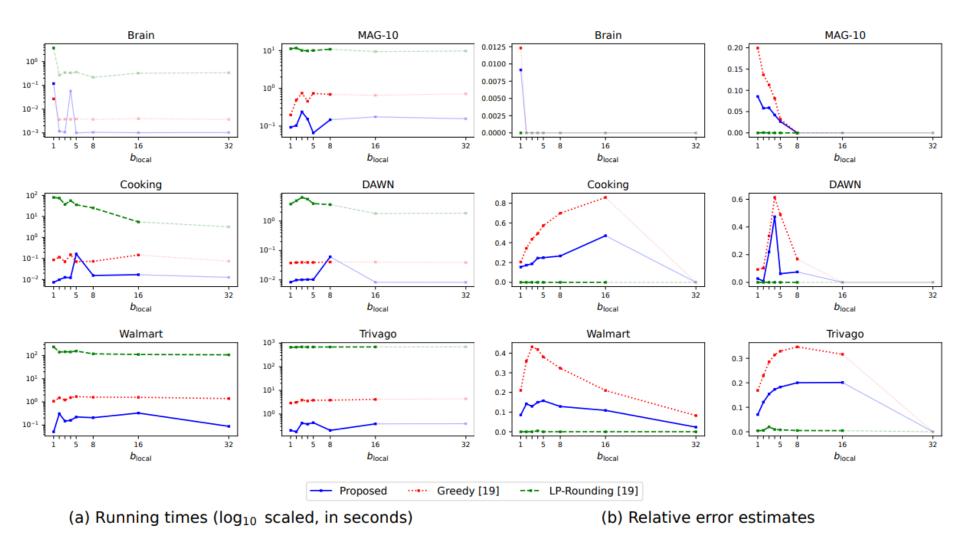


Figure 1: (a) Running times (in seconds, log scale) and (b) relative error estimates of the LOCAL ECC algorithms. Empty square markers denote trivial instances.

Paper URL

Table 2: Average running times of each dataset (in seconds): LOCAL ECC. Values in parentheses are averages excluding trivial instances.

	Proposed	Greedy	LP-rounding
Brain	0.023 (0.120)	0.007 (0.028)	0.743 (3.739)
MAG-10	0.142 (0.134)	0.587 (0.554)	10.413 (10.677)
Cooking	0.032 (0.035)	0.099 (0.103)	39.702 (44.916)
DAWN	0.016 (0.019)	0.040 (0.040)	3.948 (4.658)
Walmart	0.190 (0.190)	1.443 (1.443)	145.427 (145.427)
Trivago	0.323 (0.313)	3.709 (3.608)	678.585 (677.036)

• Local ECC

 $r \coloneqq \max|e|$

- $(b_{local} + 1)$ -approx. alg. (LP-rounding); r-approx. alg. (greedy) [Crane et al., 2024]
- $(b_{\mathrm{local}}+1)$ -approx. alg. (combinatorial); integrality gap $\cong b_{\mathrm{local}}+1$
- $(b_{local} + 1)$ -approx. is essentially optimal —

answers an open question of Crane et al.: O(1)-approx. for Local ECC?

Global ECC

- bicriteria approx. alg. (LP-rounding); r-approx. alg. (greedy) [Crane et al., 2024]
- $(2b_{
 m global}+2)$ -approx. alg. (combinatorial); integrality gap $\geq b_{
 m global}+1$

Robust ECC

- bicriteria approx. alg. (LP-rounding); r-approx. alg. (greedy) [Crane et al., 2024]
- $(2b_{\text{robust}} + 2)$ -approx. alg. (combinatorial); integrality gap $\geq b_{\text{robust}} + 1$

Additional results

• The proposed algorithm for Local ECC works in the online setting

a vertex arrives and must color it irrevocably

• All proposed algs. admit a bicriteria approx. factor of (O(1), O(1))

answers an open question of Crane et al.: bicriteria (O(1), O(1))-approx. for Global ECC?

Thank you for listening!